skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Leite, Fernanda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Turkan, Yelda; Louis, Joseph; Leite, Fernanda; Ergan, Semiha (Ed.)
  2. Turkan, Yelda; Louis, Joseph; Leite, Fernanda; Ergan, Semiha (Ed.)
    Human activity recognition (HAR) using machine learning has shown tremendous promise in detecting construction workers’ activities. HAR has many applications in human-robot interaction research to enable robots’ understanding of human counterparts’ activities. However, many existing HAR approaches lack robustness, generalizability, and adaptability. This paper proposes a transfer learning methodology for activity recognition of construction workers that requires orders of magnitude less data and compute time for comparable or better classification accuracy. The developed algorithm transfers features from a model pre-trained by the original authors and fine-tunes them for the downstream task of activity recognition in construction. The model was pre-trained on Kinetics-400, a large-scale video-based human activity recognition dataset with 400 distinct classes. The model was fine-tuned and tested using videos captured from manual material handling (MMH) activities found on YouTube. Results indicate that the fine-tuned model can recognize distinct MMH tasks in a robust and adaptive manner which is crucial for the widespread deployment of collaborative robots in construction. 
    more » « less
  3. Turkan, Yelda; Louis, Joseph; Leite, Fernanda; Ergan, Semiha (Ed.)
    Construction technology researchers and forward-thinking companies are experimenting with collaborative robots (aka cobots), powered by artificial intelligence (AI), to explore various automation scenarios as part of the digital transformation of the industry. Intelligent cobots are expected to be the dominant type of robots in the future of work in construction. However, the black-box nature of AI-powered cobots and unknown technical and psychological aspects of introducing them to job sites are precursors to trust challenges. By analyzing the results of semi-structured interviews with construction practitioners using grounded theory, this paper investigates the characteristics of trustworthy AI-powered cobots in construction. The study found that while the key trust factors identified in a systematic literature review -conducted previously by the authors- resonated with the field experts and end users, other factors such as financial considerations and the uncertainty associated with change were also significant barriers against trusting AI-powered cobots in construction. 
    more » « less